## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# Potassium aquaterbium(III) oxalate sulfate 

Ya-Guang Sun,* Mei-yan Guo, Gang Xiong, Bing Jiang and Lei Wang

Laboratory of Coordination Chemistry, Shenyang Institute of Chemical Technology, Shenyang 110142, People's Republic of China
Correspondence e-mail: yaguangsun@yahoo.com.cn

Received 22 April 2009; accepted 24 May 2009

Key indicators: single-crystal X-ray study; $T=113 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$;
$R$ factor $=0.023 ; w R$ factor $=0.051 ;$ data-to-parameter ratio $=8.5$.

Single crystals of $\mathrm{KTb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$, potassium aquaterbium(III) oxalate sulfate, were obtained under hydrothermal conditions. In the crystal structure, the Tb (III) atom is coordinated by four O atoms from two oxalate anions, three O atoms from three sulfate anions and one O atom from a water molecule within a $\mathrm{TbO}_{8}$ distorted square antiprismatic coordination. The potassium and terbium(III) atoms are bridged by the oxalate and sulfate groups, forming a threedimensional structure. The coordination mode of the oxalate has not yet been reported. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the water molecules and the oxygen atoms of oxalate and sulfate anions is also observed.

## Related literature

For oxaltes and their coordination modes, see: Audebrand et al. (2003); Dean et al. (2004); Lu et al. (2004).

## Experimental

## Crystal data

$\mathrm{KTb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$
$M_{r}=400.14$
Monoclinic, $P 2_{1} / c$
$a=6.5274$ (13) A
$b=8.5072(17) \AA$
$c=14.591$ (4) A
$\beta=112.65$ (3) ${ }^{\circ}$

$$
\begin{aligned}
& V=747.7(3) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=10.32 \mathrm{~mm}^{-1} \\
& T=113 \mathrm{~K} \\
& 0.06 \times 0.04 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART 1000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.576, T_{\text {max }}=0.820$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.051$
$S=1.05$
1317 reflections
127 parameters

24 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.92 \mathrm{e}^{\AA^{-3}}$
4812 measured reflections
1317 independent reflections
1079 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\Delta \rho_{\text {min }}=-0.78 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA \AA^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2^{\text {i }}$ | 0.96 (6) | 1.88 (4) | 2.731 (4) | 145 (5) |
| $\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$ | 0.96 (6) | 1.86 (3) | 2.787 (5) | 160 (9) |
| $\mathrm{O} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$ | 0.97 (6) | 2.83 (9) | 3.149 (5) | 100 (6) |

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x,-y+1,-z$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This project was sponsored by SRF for ROCS, SEM, and the Research Foundation of Education Department of Liaoning Province (No. 2008581).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2105).

## References

Audebrand, N., Raite, S. \& Louer, D. (2003). Solid State Sci. 5, 783-794.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dean, P. A. W., Craig, D., Dance, I., Russell, V. \& Scudder, M. (2004). Inorg. Chem. 43, 443-449
Lu, J., Li, Y., Zhao, K., Xu, J.-Q., Yu, J.-H., Li, G.-H., Zhang, X., Bie, H.-Y. \& Wang, T.-G. (2004). Inorg. Chem. Commun. 7, 1154-1156.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supplementary materials

Acta Cryst. (2009). E65, i48 [ doi:10.1107/S1600536809019679]

## Potassium aquaterbium(III) oxalate sulfate

Y.-G. Sun, M. Guo, G. Xiong, B. Jiang and L. Wang

## Comment

Recently, rationally design of novel inorganic componds based on alkali metal ions and rare earth ions are currently of great interest because of their potential applications in photoluminescent fields. For purpose of enriching the chemistry field of this compound family, we have successfully synthesized the title compound.

In the title compound, the coordination environments of the rare earth $\mathrm{Tb}^{\mathrm{III}}$ cations consist of eight O atoms which are associated with one water molecule, two sulfate groups and two oxalates. $\mathrm{Tb}^{\text {III }}$ cations are at the shared apex of two dicapped rectangular pyramids (Fig.1). The $\mathrm{K}^{+}$cations are surrounded by nine O atoms, including one water O atom, six O atoms from oxalates and two O atoms from sulfate groups.

Oxalates are of considerable interest because many of them are natural minerals and in addition, the oxalate anion can adopt different coordination modes to bind metals to form infinite chains, sheets and networks, leading to the rich structural chemistry (Lu et al., 2004; Dean et al., 2004; Audebrand et al., 2003). In the title compound, the oxalate ligand has an unique coordination mode $\left(\kappa^{3}-\kappa^{2}-\mu_{4}\right)-\left(\kappa^{3}-\kappa^{2}-\mu_{4}\right)-\mu_{6}$-ox ${ }^{2-}$. Fig. 2 shows coordination mode of the oxalate and sulfate ligands in the title compuond.

Two adjacent $\mathrm{Tb}^{\mathrm{III}}$ ions were connected through the oxalates to form one-dimensional chain structure (see Fig.3), and then were connected through the sulfate anions and water molecules to form the three-dimensional framework (see Fig.4).

## Experimental

A mixture of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}), \mathrm{Tb}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ and oxalic acid $(0.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was adjust to $\mathrm{pH}=6.8$ with KOH aqueous solution, sealed in a 25 mL Teflon-lined bomb at 430 K for 4 days and then slowly cooled to room temperature at a rate of $5^{\circ} \mathrm{K}$ per hour. Colorless block crystals were obtained by filtration. The structure was determined by single-crystal diffraction.

## Refinement

Water H atoms were located in a difference Fourier maps and refined to restraint with $\mathrm{O}-\mathrm{H}$ distance of $0.97 \AA$ and Uĩso(H) $=1.2 \mathrm{Ueq}(\mathrm{O})$. In order improve the $R$ and $w R$ factors, weak diffraction reflections in high 2 theta angles were omitted.Because of difficulties in obtaining convergence in the refinement the anisotropy of the atomic displacement parameters of some O and C atoms were restrained.

## supplementary materials

Figures


Fig. 1. A view of the environment of $(a)$ the Tb atom, The symmetry codes are in Table 1.Displacement ellipsoids are drawn at the $50 \%$ probability level.


Fig. 2. A view of coordination modes of (a)the Oxalate and (b) the sulfate anion.


Fig. 3. The one-dimensional chain structure of the $\mathrm{KTb}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ along $c$ axis(hydrogen atoms omitted).


Fig. 4. The structural arrangement of $\mathrm{KTb}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ along $b$ axis(hydrogen and potassium atoms omitted). The green polyhedras are $\mathrm{TbO}_{8}$.

## Potassium aquaterbium(III) oxalate sulfate

## Crystal data

$\mathrm{KTb}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$
$M_{r}=400.14$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.5274$ (13) $\AA$
$b=8.5072$ (17) $\AA$
$c=14.591$ (4) $\AA$
$\beta=112.65$ (3) ${ }^{\circ}$
$V=747.7(3) \AA^{3}$
$Z=4$
$F_{000}=744$
$D_{\mathrm{x}}=3.554 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K $\alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1317 reflections
$\theta=2.8-27.2^{\circ}$
$\mu=10.32 \mathrm{~mm}^{-1}$
$T=113 \mathrm{~K}$
Block, colorless
$0.06 \times 0.04 \times 0.02 \mathrm{~mm}$

## Data collection

Bruker SMART 1000 CCD
diffractometer
Radiation source: rotating anode
Monochromator: confocal

1317 independent reflections
1079 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$

## $T=113 \mathrm{~K}$

$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.576, T_{\text {max }}=0.820$
4812 measured reflections
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 10$
$l=-17 \rightarrow 17$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0171 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.92$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.78$ e $\AA^{-3}$
Extinction correction: none

24 restraints
Primary atom site location: structure-invariant direct methods

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Tb1 | $0.33208(4)$ | $0.24112(3)$ | $0.086605(17)$ | $0.00425(11)$ |
| K1 | $0.9670(2)$ | $-0.15405(14)$ | $0.19899(9)$ | $0.0144(3)$ |
| S1 | $0.7406(2)$ | $0.16467(15)$ | $-0.02448(9)$ | $0.0057(3)$ |
| O1 | $0.2682(6)$ | $0.1255(4)$ | $0.2251(3)$ | $0.0079(8)$ |
| O2 | $0.6044(6)$ | $0.4446(4)$ | $0.1557(2)$ | $0.0074(8)$ |
| O3 | $0.2189(6)$ | $0.4466(4)$ | $0.1717(2)$ | $0.0079(8)$ |
| O4 | $0.6523(6)$ | $0.1083(4)$ | $0.1984(3)$ | $0.0065(8)$ |
| O5 | $0.5568(7)$ | $0.2364(4)$ | $-0.0040(3)$ | $0.0077(8)$ |
| O6 | $0.7540(6)$ | $-0.0053(4)$ | $-0.0015(3)$ | $0.0080(8)$ |
| O7 | $0.9493(7)$ | $0.2388(4)$ | $0.0409(3)$ | $0.0096(9)$ |
| O8 | $0.7035(7)$ | $0.1876(5)$ | $-0.1285(3)$ | $0.0119(9)$ |


| O9 | $0.1774(6)$ | $0.4070(4)$ | $-0.0544(3)$ | $0.0072(8)$ |
| :--- | :--- | :--- | :--- | :--- |
| H9A | $0.285(8)$ | $0.475(6)$ | $-0.063(5)$ | $0.04(2)^{*}$ |
| H9B | $0.047(6)$ | $0.448(9)$ | $-0.107(5)$ | $0.13(4)^{*}$ |
| C1 | $0.4137(9)$ | $0.0364(6)$ | $0.2801(4)$ | $0.0043(11)$ |
| C2 | $0.3644(9)$ | $0.5312(6)$ | $0.2329(4)$ | $0.0052(11)$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Tb1 | $0.00438(17)$ | $0.00457(17)$ | $0.00411(16)$ | $0.00031(11)$ | $0.00197(12)$ | $0.00024(10)$ |
| K1 | $0.0141(8)$ | $0.0162(7)$ | $0.0164(7)$ | $-0.0038(6)$ | $0.0099(6)$ | $-0.0061(5)$ |
| S1 | $0.0054(8)$ | $0.0063(7)$ | $0.0061(7)$ | $-0.0002(6)$ | $0.0029(6)$ | $-0.0010(5)$ |
| O1 | $0.006(2)$ | $0.009(2)$ | $0.010(2)$ | $0.0033(17)$ | $0.0045(18)$ | $0.0001(15)$ |
| O2 | $0.010(2)$ | $0.0070(19)$ | $0.008(2)$ | $-0.0028(17)$ | $0.0067(18)$ | $-0.0041(16)$ |
| O3 | $0.008(2)$ | $0.009(2)$ | $0.006(2)$ | $-0.0019(17)$ | $0.0013(18)$ | $-0.0020(15)$ |
| O4 | $0.0068(12)$ | $0.0062(11)$ | $0.0066(11)$ | $-0.0001(9)$ | $0.0028(9)$ | $-0.0002(8)$ |
| O5 | $0.011(2)$ | $0.0047(19)$ | $0.013(2)$ | $0.0011(16)$ | $0.0096(18)$ | $-0.0002(14)$ |
| O6 | $0.011(2)$ | $0.0035(19)$ | $0.010(2)$ | $-0.0010(17)$ | $0.0048(17)$ | $-0.0014(14)$ |
| O7 | $0.008(2)$ | $0.009(2)$ | $0.012(2)$ | $0.0002(17)$ | $0.0041(18)$ | $0.0008(16)$ |
| O8 | $0.016(3)$ | $0.014(2)$ | $0.008(2)$ | $-0.0015(19)$ | $0.0071(19)$ | $0.0010(16)$ |
| O9 | $0.0063(12)$ | $0.0077(12)$ | $0.0083(11)$ | $-0.0003(9)$ | $0.0036(9)$ | $0.0017(8)$ |
| C1 | $0.0048(14)$ | $0.0036(14)$ | $0.0043(13)$ | $0.0005(9)$ | $0.0015(10)$ | $-0.0011(9)$ |
| C2 | $0.0052(14)$ | $0.0046(14)$ | $0.0057(14)$ | $0.0003(9)$ | $0.0019(10)$ | $0.0010(9)$ |

Geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ )

| Tbl- $\mathrm{O}^{\text {i }}$ | 2.311 (4) |
| :---: | :---: |
| Tb1-O5 | 2.323 (3) |
| $\mathrm{Tb} 1-\mathrm{O} 7^{\mathrm{ii}}$ | 2.325 (4) |
| Tb1-09 | 2.375 (4) |
| Tb1-O4 | 2.382 (4) |
| Tb1-O2 | 2.406 (4) |
| Tb1-O3 | 2.419 (3) |
| Tb1-O1 | 2.423 (3) |
| $\mathrm{K} 1-\mathrm{O} 8^{\text {iii }}$ | 2.733 (4) |
| $\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iv }}$ | 2.744 (3) |
| $\mathrm{K} 1-\mathrm{O} 1^{\text {iv }}$ | 2.900 (3) |
| $\mathrm{K} 1-\mathrm{O} 9^{\mathrm{i}}$ | 2.903 (4) |
| $\mathrm{K} 1-\mathrm{O} 2^{\mathrm{V}}$ | 2.909 (4) |
| K1-O6 | 2.992 (4) |
| $\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 3.016 (4) |
| K1-O4 | 3.032 (4) |
| $\mathrm{K} 1-\mathrm{O} 4^{\text {v }}$ | 3.105 (4) |
| $\mathrm{K} 1-\mathrm{C} 2{ }^{\text {iv }}$ | 3.132 (5) |
| $\mathrm{K} 1-\mathrm{C} 1^{\text {vi }}$ | 3.141 (6) |


| S1-O5 | 1.476 (3) |
| :---: | :---: |
| S1-O6 | 1.480 (4) |
| O1-C1 | 1.238 (6) |
| O1-K1 $1^{\text {vii }}$ | 2.900 (3) |
| O1-K1 ${ }^{\text {ii }}$ | 3.016 (4) |
| $\mathrm{O} 2-\mathrm{C}^{\text {vii }}$ | 1.261 (5) |
| $\mathrm{O} 2-\mathrm{K} 1^{\text {viii }}$ | 2.909 (4) |
| O3-C2 | 1.250 (6) |
| O3-K1 $1^{\text {vii }}$ | 2.744 (3) |
| $\mathrm{O} 4-\mathrm{C} 2{ }^{\text {iv }}$ | 1.238 (6) |
| O4-K1 ${ }^{\text {viii }}$ | 3.105 (4) |
| O6-Tb1 ${ }^{\text {i }}$ | 2.311 (4) |
| O7-Tb1 ${ }^{\text {vi }}$ | 2.325 (4) |
| O8-K1 ${ }^{\text {iii }}$ | 2.733 (4) |
| O9-K $1^{\text {i }}$ | 2.903 (4) |
| O9-H9A | 0.96 (6) |
| O9-H9B | 0.97 (6) |
| $\mathrm{C} 1-\mathrm{O} 2{ }^{\text {iv }}$ | 1.261 (5) |
| $\mathrm{C} 1-\mathrm{C} 2{ }^{\text {iv }}$ | 1.532 (7) |

## sup-4

| K1-S1 ${ }^{\text {iii }}$ | 3.7251 (18) |
| :---: | :---: |
| S1-08 | 1.455 (4) |
| S1-07 | 1.470 (4) |
| O6 ${ }^{\text {i }}$ | 75.84 (12) |
| $\mathrm{O} 6^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 7{ }^{\text {ii }}$ | 80.00 (13) |
| $\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 7{ }^{\text {ii }}$ | 132.93 (13) |
| O6- ${ }^{\text {i }}$ - $\mathrm{Tb} 1-\mathrm{O} 9$ | 96.65 (12) |
| O5-Tbl-O9 | 70.62 (12) |
| $\mathrm{O} 7 \mathrm{ii}-\mathrm{Tb} 1-\mathrm{O} 9$ | 72.86 (12) |
| O5-Tb1-O4 | 78.58 (12) |
| $\mathrm{O} 7{ }^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 4$ | 138.98 (12) |
| $\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 4$ | 147.42 (11) |
| $\mathrm{O} 6{ }^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 2$ | 146.78 (11) |
| $\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 2$ | 74.00 (11) |
| $\mathrm{O} 7{ }^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 2$ | 131.70 (12) |
| $\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 2$ | 86.26 (13) |
| $\mathrm{O} 4-\mathrm{Tb} 1-\mathrm{O} 2$ | 75.09 (13) |
| $\mathrm{O} 6{ }^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 3$ | 147.54 (12) |
| $\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 3$ | 133.59 (11) |
| $\mathrm{O} 7{ }^{\mathrm{ii}}-\mathrm{Tb} 1-\mathrm{O} 3$ | 69.30 (12) |
| $\mathrm{O} 4-\mathrm{Tb} 1-\mathrm{O} 3$ | 110.60 (12) |
| $\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 3$ | 65.64 (12) |
| $\mathrm{O} 6{ }^{\mathrm{i}}-\mathrm{Tb} 1-\mathrm{O} 1$ | 90.64 (12) |
| $\mathrm{O} 5-\mathrm{Tb} 1-\mathrm{O} 1$ | 144.76 (13) |
| $\mathrm{O} 9-\mathrm{Tb} 1-\mathrm{O} 1$ | 144.20 (12) |
| $\mathrm{O} 4-\mathrm{Tb} 1-\mathrm{O} 1$ | 67.90 (12) |
| $\mathrm{O} 2-\mathrm{Tb} 1-\mathrm{O} 1$ | 106.20 (11) |
| $\mathrm{O} 3-\mathrm{Tb} 1-\mathrm{O} 1$ | 71.38 (11) |
| $\mathrm{O} 8^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3^{\text {iv }}$ | 155.77 (13) |
| $\mathrm{O} 8^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1^{\text {iv }}$ | 133.26 (11) |
| $\mathrm{O} 3^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1^{\text {iv }}$ | 59.99 (10) |
| $\mathrm{O} 8^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{O} 9^{\mathrm{i}}$ | 74.43 (11) |
| $\mathrm{O} 3{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 9^{\text {i }}$ | 128.67 (11) |
| $\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 9^{\text {i }}$ | 74.15 (10) |
| $\mathrm{O} 8^{\text {iiii }}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{v}}$ | 68.22 (11) |
| $\mathrm{O} 3{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{v}}$ | 87.98 (11) |
| $\mathrm{O} 1^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{v}}$ | 114.22 (11) |
| $\mathrm{O} 9^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{v}}$ | 134.04 (11) |
| O8 $8^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 6$ | 79.21 (11) |
| $\mathrm{O} 3{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 6$ | 112.22 (11) |
| $\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 6$ | 122.12 (12) |


| $\mathrm{C} 2-\mathrm{O} 4^{\text {vii }}$ | 1.238 (6) |
| :---: | :---: |
| $\mathrm{C} 2-\mathrm{Cl}^{\text {vii }}$ | 1.532 (7) |
| $\mathrm{O} 1{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 4$ | 80.09 (10) |
| $\mathrm{O} 8^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$ | 60.90 (11) |
| $\mathrm{O} 3^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$ | 110.83 (11) |
| $\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$ | 80.67 (10) |
| $\mathrm{O} 9^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$ | 80.98 (10) |
| $\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$ | 57.98 (10) |
| $\mathrm{O} 6-\mathrm{K} 1-\mathrm{O} 4^{\text {v }}$ | 136.94 (9) |
| $\mathrm{O} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$ | 95.21 (11) |
| $\mathrm{O} 4-\mathrm{K} 1-\mathrm{O} 4^{\text {v }}$ | 153.72 (5) |
| O8-S1-O7 | 111.1 (2) |
| O8-S1-O5 | 109.5 (2) |
| O7-S1-O5 | 108.3 (2) |
| O8-S1-O6 | 109.8 (2) |
| O7-S1-06 | 108.2 (2) |
| O5-S1-O6 | 109.9 (2) |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{Tb} 1$ | 117.0 (3) |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {vii }}$ | 122.4 (3) |
| Tb1-O1-K1 $1^{\text {vii }}$ | 110.02 (12) |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$ | 84.2 (3) |
| Tb1-O1-K1 ${ }^{\text {ii }}$ | 121.87 (14) |
| $\mathrm{K} 1{ }^{\mathrm{vii}}-\mathrm{O} 1-\mathrm{K} 1^{\mathrm{ii}}$ | 98.21 (10) |
| $\mathrm{C} 1{ }^{\text {vii }} \mathrm{O} 2-\mathrm{Tb} 1$ | 119.4 (3) |
| $\mathrm{C} 1^{\text {vii }}-\mathrm{O} 2-\mathrm{K} 1^{\text {viii }}$ | 88.6 (3) |
| Tb1-O2-K1 ${ }^{\text {viii }}$ | 116.49 (13) |
| $\mathrm{C} 2-\mathrm{O} 3-\mathrm{Tb} 1$ | 119.0 (3) |
| $\mathrm{C} 2-\mathrm{O} 3-\mathrm{K} 1^{\text {vii }}$ | 96.0 (3) |
| Tb1-O3-K1 $1^{\text {vii }}$ | 115.52 (14) |
| $\mathrm{C} 2{ }^{\text {iv }}-\mathrm{O} 4-\mathrm{Tb} 1$ | 118.6 (3) |
| $\mathrm{C} 2{ }^{\text {iv }}-\mathrm{O} 4-\mathrm{K} 1$ | 83.0 (3) |
| Tb1-O4-K1 | 139.97 (14) |
| $\mathrm{C} 2{ }^{\text {iv }}-\mathrm{O} 4-\mathrm{K} 1^{\text {viii }}$ | 105.0 (3) |
| Tb1-O4-K1 ${ }^{\text {viii }}$ | 110.44 (12) |
| $\mathrm{K} 1-\mathrm{O} 4-\mathrm{K} 1^{\text {viii }}$ | 93.58 (10) |
| $\mathrm{S} 1-\mathrm{O} 5-\mathrm{Tb} 1$ | 149.7 (2) |
| $\mathrm{S} 1-\mathrm{O} 6-\mathrm{Tb} 1^{\text {i }}$ | 138.2 (2) |
| S1-O6-K1 | 126.8 (2) |
| Tb1 ${ }^{\text {i }}$-O6-K1 | 94.79 (12) |
| S1-O7-Tb1 ${ }^{\text {vi }}$ | 144.5 (2) |

## supplementary materials

| O9 ${ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 6$ | 72.82 (10) | S1-O8-K1ii | 122.7 (2) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 6$ | 123.02 (10) | Tb1-O9-K1 ${ }^{\text {i }}$ | 95.73 (12) |
| $\mathrm{O} 8^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 63.92 (11) | Tb1-O9-H9A | 113 (4) |
| $\mathrm{O} 3^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 96.12 (11) | K1 ${ }^{\text {i }}$-O9- H 9 A | 113 (4) |
| $\mathrm{O1}{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 151.31 (6) | Tb1-O9-H9B | 149 (4) |
| $\mathrm{O} 9 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 133.59 (10) | K1 ${ }^{\text {i }}$-O9- H 9 B | 75 (6) |
| $\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 44.18 (10) | H9A-O9-H9B | 97.7 (13) |
| $\mathrm{O} 6-\mathrm{K} 1-\mathrm{O} 1^{\text {vi }}$ | 79.92 (11) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2{ }^{\text {iv }}$ | 126.4 (5) |
| O8 $8^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 4$ | 134.96 (11) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C}^{\text {iv }}$ | 117.6 (4) |
| $\mathrm{O} 3{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 4$ | 45.03 (10) | $\mathrm{O} 2{ }^{\text {iv }}-\mathrm{C} 1-\mathrm{C}^{\text {iv }}$ | 116.0 (5) |
| $\mathrm{O} 1^{\text {iv }}-\mathrm{K} 1-\mathrm{O} 4$ | 91.10 (10) | $\mathrm{O} 4{ }^{\text {vii }}-\mathrm{C} 2-\mathrm{O} 3$ | 127.1 (5) |
| $\mathrm{O} 9^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 4$ | 120.90 (11) | $\mathrm{O} 4^{\mathrm{vii}}-\mathrm{C} 2-\mathrm{C} 1^{\text {vii }}$ | 117.8 (5) |
| $\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{K} 1-\mathrm{O} 4$ | 104.49 (11) | $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1^{\text {vii }}$ | 115.0 (4) |

O6-K1—O4 68.10 (9)
Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-1, y, z$; (iii) $-x+2,-y,-z$; (iv) $-x+1, y-1 / 2,-z+1 / 2$; (v) $-x+2, y-1 / 2,-z+1 / 2$; (vi) $x+1, y, z$; (vii) $-x+1, y+1 / 2,-z+1 / 2$; (viii) $-x+2, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ( $\left.\AA{ }^{\circ}{ }^{\circ}\right)$

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}-\mathrm{H} 9 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{ix}}$ | $0.96(6)$ | $1.88(4)$ | $2.731(4)$ | $145(5)$ |
| $\mathrm{O}-\mathrm{H} 9 \mathrm{~B} \cdots 3^{\mathrm{x}}$ | $0.96(6)$ | $1.86(3)$ | $2.787(5)$ | $160(9)$ |
| $\mathrm{O}-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 7^{\mathrm{ix}}$ | $0.97(6)$ | $2.83(9)$ | $3.149(5)$ | $100(6)$ |

Symmetry codes: (ix) $-x+1,-y+1,-z$; (x) $-x,-y+1,-z$.

Fig. 1


Fig. 2

(a)

(b)

Fig. 3


Fig. 4


